Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Future Med Chem ; 16(6): 545-562, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38348480

RESUMO

Increasing resistance in Staphylococcus aureus has created a critical need for new drugs, especially those effective against methicillin-resistant strains (methicillin-resistant Staphylococcus aureus [MRSA]). Sulfonamides are a privileged scaffold for the development of novel antistaphylococcal agents. This review covers recent advances in sulfonamides active against MRSA. Based on the substitution patterns of sulfonamide moieties, its derivatives can be tuned for desired properties and biological activity. Contrary to the traditional view, not only N-monosubstituted 4-aminobenzenesulfonamides are effective. Novel sulfonamides have various mechanisms of action, not only 'classical' inhibition of the folate biosynthetic pathway. Some of them can overcome resistance to classical sulfa drugs and cotrimoxazole, are bactericidal and active in vivo. Hybrid compounds with distinct bioactive scaffolds are particularly advantageous.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Staphylococcus aureus , Sulfanilamida/farmacologia
2.
ChemMedChem ; 19(5): e202300527, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241069

RESUMO

A novel series of N-(4-cyano-1,3-oxazol-5-yl)sulfonamides have been synthesized and characterized by IR, 1 H NMR, 13 C NMR spectroscopy, elemental analysis and chromato-mass-spectrometry. The anticancer activities of all newly synthesized compounds were evaluated via a single high-dose assay (10 µM) against 60 cancer cell lines by the National Cancer Institute (USA) according to its screening protocol. Among them, compounds 2 and 10 exhibited the highest activity against the 60 cancer cell lines panel in the one-dose assay. Compounds 2 and 10 showed inhibitory activity within the GI50 parameter and in five dose analyses. However, their cytostatic activity was only observed against some cancer cell lines, and cytotoxic concentration was outside the maximum used, i. e., >100 µM. The COMPARE analysis showed that the average graphs of the tested compounds have a moderate positive correlation with compounds with the L-cysteine analog and vinblastine (GI50 ) as well as paclitaxel (TGI), which target microtubules. Therefore, disruption of microtubule formation may be one of the mechanisms of the anticancer activity of the tested compounds, especially since among tubulin inhibitors with antitumor activity, compounds with an oxazole motif are widely represented. Therefore, N-(4-cyano-1,3-oxazol-5-yl)sulfonamides may be promising for further functionalization to obtain more active compounds.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Detecção Precoce de Câncer , Estrutura Molecular , Relação Estrutura-Atividade , Sulfanilamida/farmacologia , Sulfonamidas/química , Humanos
3.
Appl Environ Microbiol ; 89(12): e0166223, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38047646

RESUMO

IMPORTANCE: Antibiotics can induce dose-dependent hormetic effects on bacterial cell proliferation, i.e., low-dose stimulation and high-dose inhibition. However, the underlying molecular basis has yet to be clarified. Here, we showed that sulfonamides play dual roles as a weapon and signal against Comamonas testosteroni that can modulate cell physiology and phenotype. Subsequently, through investigating the hormesis mechanism, we proposed a comprehensive regulatory pathway for the hormetic effects of Comamonas testosteroni low-level sulfonamides and determined the generality of the observed regulatory model in the Comamonadaceae family. Considering the prevalence of Comamonadaceae in human guts and environmental ecosystems, we provide critical insights into the health and ecological effects of antibiotics.


Assuntos
Hormese , Sulfonamidas , Humanos , Sulfonamidas/farmacologia , Ecossistema , Percepção de Quorum , Sulfanilamida/farmacologia , Antibacterianos/farmacologia
4.
Environ Pollut ; 336: 122486, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37669699

RESUMO

Sulfadiazine and its derivatives (sulfonamides, SAs) could induce distinct biotoxic, metabolic and physiological abnormalities, potentially due to their subtle structural differences. This study conducted an in-depth investigation on the interactions between SA homologues, i.e. sulfadiazine (SD), sulfamerazine (SD1), and sulfamethazine (SD2), and the key metabolic enzyme (glycosyltransferase, GT) in rice (Oryza sativa L.). Untargeted screening of SA metabolites revealed that GT-catalyzed glycosylation was the primary transformation pathway of SAs in rice. Molecular docking identified that the binding sites of SAs on GT (D0TZD6) were responsible for transferring sugar moiety to synthesize polysaccharides and detoxify SAs. Specifically, amino acids in the GT-binding cavity (e.g., GLY487 and CYS486) formed stable hydrogen bonds with SAs (e.g., the sulfonamide group of SD). Molecular dynamics simulations revealed that SAs induced conformational changes in GT ligand binding domain, which was supported by the significantly decreased GT activity and gene expression level. As evidenced by proteomics and metabolomics, SAs inhibited the transfer and synthesis of sugar but stimulated sugar decomposition in rice leaves, leading to the accumulation of mono- and disaccharides in rice leaves. While the differences in the increased sugar content by SD (24.3%, compared with control), SD1 (11.1%), and SD2 (6.24%) can be attributed to their number of methyl groups (0, 1, 2, respectively), which determined the steric hindrance and hydrogen bonds formation with GT. This study suggested that the disturbances on crop sugar metabolism by homologues contaminants are determined by the interaction between the contaminants and the target enzyme, and are greatly dependent on the steric hindrance effects contributed by their side chains. The results are of importance to identify priority pollutants and ensure crop quality in contaminated fields.


Assuntos
Doenças Metabólicas , Oryza , Oryza/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Glicosiltransferases/farmacologia , Simulação de Acoplamento Molecular , Sulfanilamida/metabolismo , Sulfanilamida/farmacologia , Sulfadiazina/metabolismo , Sulfonamidas/metabolismo , Açúcares
5.
Chem Biodivers ; 20(9): e202300505, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37532674

RESUMO

In the last few years, the interest in sulfonamides has expanded owing to their broad spectrum of biological activities. Their flexible structure turns them into amazing candidates to replace old drugs or develop modern multi-target agents. In this study, a series of new sulfonamides (sul1-5) was evaluated, in vitro, for the antibacterial, cytotoxic and genotoxic effects. The antibacterial activity was investigated against 12 clinical and 4 reference strains. Cytotoxic activity was carried out by the brine shrimp bioassay and the genotoxicity was assessed in the Ames test. An interesting antibacterial activity was showed especially against Gram negative strains. The inhibition zones varied between 15 and 30 mm, and the Minimum Inhibitory Concentrations (MIC's) values between 0.5 and 256 µg/ml. No antibacterial activity was shown with S. aureus isolates. Only Sul1 and Sul4 were active against P. aeruginosa. Compounds Sul1 and Sul2 showed a significant cytotoxicity with LC50 equal to 18.29 and 18 µg/ml respectively, and a genotoxic effect against TA100 and TA1535 Salmonella strains. Only compounds Sul3, Sul4 and Sul5 with an interesting antibacterial activity, no cytotoxicity and no genotoxic effects, could be exploited against resistant pathogens as new drugs.


Assuntos
Antineoplásicos , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Sulfanilamida/farmacologia , Dose Letal Mediana , Salmonella , Antineoplásicos/farmacologia , Testes de Sensibilidade Microbiana
6.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446136

RESUMO

Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides (MM-compounds) are a relatively new class of heterocyclic compounds that exhibit a wide variety of biological actions, including anticancer properties. Here, we used caspase enzyme activity assays, flow cytometry analysis of propidium iodide (PI)-stained cells, and a DNA laddering assay to investigate the mechanisms of cell death triggered by the MM-compounds (MM134, -6, -7, and -9). Due to inconsistent results in caspase activity assays, we have performed a bromodeoxyuridine (BrdU) incorporation assay, colony formation assay, and gene expression profiling. The compounds' cytotoxic and pro-oxidative properties were also assessed. Additionally, computational studies were performed to demonstrate the potential of the scaffold for future drug discovery endeavors. MM-compounds exhibited strong micromolar (0.06-0.35 µM) anti-proliferative and pro-oxidative activity in two cancer cell lines (BxPC-3 and PC-3). Activation of caspase 3/7 was observed following a 24-h treatment of BxPC-3 cells with IC50 concentrations of MM134, -6, and -9 compounds. However, no DNA fragmentation characteristics for apoptosis were observed in the flow cytometry and DNA laddering analysis. Gene expression data indicated up-regulation of BCL10, GADD45A, RIPK2, TNF, TNFRSF10B, and TNFRSF1A (TNF-R1) following treatment of cells with the MM134 compound. Moreover, in silico studies indicated AKT2 kinase as the primary target of compounds. MM-compounds exhibit strong cytotoxic activity with pro-oxidative, pro-apoptotic, and possibly pro-necroptotic properties that could be employed for further drug discovery approaches.


Assuntos
Antineoplásicos , Triazinas , Linhagem Celular Tumoral , Triazinas/farmacologia , Sulfonamidas/farmacologia , Antineoplásicos/farmacologia , Apoptose , Caspases/metabolismo , Sulfanilamida/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Estrutura Molecular , Relação Estrutura-Atividade
7.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446005

RESUMO

This work describes the design and synthesis of new hybrids of thienopyrimidine and sulfonamides. The binding affinity of the prepared compounds to FGFR-1 enzyme and caspase-3 was investigated via molecular docking. The cytotoxic effect was estimated for the synthesized compounds against human breast cancer cell lines (MCF-7 and MDA-MB231) using Doxorubicin as a reference. All the tested compounds exhibited moderate to excellent anticancer efficacy against both tested cell lines, among which 3b and 4bi were the best. All the synthesized compounds exhibited distinguishing selectivity index values greater than Doxorubicin. The influence of the new hybrids under inquiry was further examined on both FGFR-1 and Caspase-3. The results revealed that compound 3b showed observed concordance between anti-proliferative activity and Caspase-3 activity. In respect to the compounds' effect on the apoptosis, compound 3b significantly increased the population of late apoptotic cells and necrotic cells. In silico pharmacokinetic investigation revealed that compound 3b showed the best intestinal absorption, BBB permeability, and, along with 4bi and 4bii, the best CNS penetrability.


Assuntos
Antineoplásicos , Humanos , Caspase 3/metabolismo , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Proliferação de Células , Antineoplásicos/química , Doxorrubicina/farmacologia , Sulfanilamida/farmacologia , Apoptose , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular
8.
J Food Prot ; 86(9): 100130, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37442230

RESUMO

Salmonella represents one of the most common foodborne pathogens, frequently associated with the contamination of poultry products, constituting a prominent worldwide public health concern. This study determined the prevalence and antimicrobial resistance of Salmonella spp. in chilled chicken meat (115 samples) commercialized at retail in the Federal District, Brazil. Microbiological tests were performed to screen for Salmonella spp. in the chicken meat samples, and the isolated strains were confirmed by the invA gene presence (PCR technique). The strains were evaluated for antimicrobial susceptibility by the disk diffusion technique (Kirby-Bauer method) and tested for the presence of the sul2, blaCTX, and tetB antimicrobial resistance genes. The Salmonella spp. prevalence in chilled chicken meat sold at retail in the Federal District, Brazil, was 46.1% (53 of 115 chicken meat samples analyzed had invA gene-positive strains). Seventy-eight strains of Salmonella spp. isolated from the 53 contaminated samples showed higher resistance to amoxicillin/clavulanic acid (83.3%), followed by sulfonamide (64.1%) and tetracycline (46.2%); 53.8% of the isolates were multidrug-resistant (MDR). The sul2 gene that confers resistance to sulfonamide was found in 53 strains (68.0%), the blaCTX gene that confers resistance to beta-lactams was identified in 39 strains (50.0%), and the tetB gene that confers resistance to tetracycline was identified in 29 strains (37.2%). The high percentage of Salmonella contamination in chicken meat can pose a risk to consumers' health due to the possibility of causing salmonellosis. In addition, many isolates were MDR and carried antimicrobial resistance genes. Public agencies can use these results to develop effective public health policies and strategies to ensure the safety of these food products.


Assuntos
Antibacterianos , Anti-Infecciosos , Animais , Antibacterianos/farmacologia , Galinhas/microbiologia , Farmacorresistência Bacteriana , Prevalência , Brasil/epidemiologia , Carne/microbiologia , Salmonella , Anti-Infecciosos/farmacologia , Sulfanilamida/farmacologia , Tetraciclinas/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética
9.
Aquat Toxicol ; 261: 106614, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37390778

RESUMO

Antibiotics, due to their stability and persistence in the environment, can have chronic impacts on various ecosystems and organisms. However, the molecular mechanisms underlying antibiotic toxicity at environmental concentrations, particularly the neurotoxic effects of sulfonamides (SAs), remain poorly understood. In this study, we assessed the neurotoxicity of six SAs including the sulfadiazine (SD), sulfathiazole (ST), sulfamethoxazole (SMX), sulfisoxazole (SIZ), sulfapyridine (SPD), and sulfadimethoxine (SDM) by exposing zebrafish to environmentally relevant concentrations (ERCs). The SAs exhibited concentration-dependent effects on zebrafish behavior, including spontaneous movement, heartbeat, survival rate, and body metrics, ultimately leading to depressive-like symptoms and sublethal toxicity during early life stages. Notably, even the lowest SA concentration (0.05 µg/L) induced neurotoxicity and behavioral impairment in zebrafish. We observed a dose-dependent increase in melancholy behavior as indicated by increased resting time and decreased motor activity in zebrafish larvae. Following exposure to SAs from 4 to 120 h post-fertilization (hpf), key genes involved in folate synthesis [sepiapterin reductase a (spra), phenylalanine hydroxylase (pah), tyrosine hydroxylase (th), and tryptophan hydroxylase 1 (tryptophan 5-monooxygenase) a tryptophan hydroxylase (tph1a)] and carbonic anhydrase (CA) metabolism [carbonic anhydrase II (ca2), carbonic anhydrase IV a (ca4a), carbonic anhydrase VII (ca7), and carbonic anhydrase XIV (ca14)] were significantly downregulated or inhibited at different concentrations. Our findings demonstrate that acute exposure to six SAs at environmentally relevant concentrations induces developmental and neurotoxic effects in zebrafish, impacting folate synthesis pathways and CA metabolism. These results provide valuable insights into the potential role of antibiotics in depressive disorders and neuroregulatory pathways.


Assuntos
Anidrases Carbônicas , Poluentes Químicos da Água , Animais , Sulfonamidas/toxicidade , Peixe-Zebra , Triptofano Hidroxilase/farmacologia , Ecossistema , Poluentes Químicos da Água/toxicidade , Sulfanilamida/farmacologia , Antibacterianos/farmacologia , Larva , Ácido Fólico/farmacologia
10.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239848

RESUMO

The current study continues the evaluation of the anticancer potential of three de novo synthesized pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides-MM129, MM130, and MM131-against human cancer cells of HeLa, HCT 116, PC-3, and BxPC-3 lines. The pro-apoptotic activity of the investigated sulfonamides was shown by observations of changes in the mitochondrial transmembrane potential of the tested cells, externalization of phosphatidylserine on the cellular membrane surface, and cell morphology in microscopic imaging. The computational studies have shown that MM129 exhibited the lowest binding energy values when docked against CDK enzymes. In addition, the highest stability was shown for complexes formed between MM129 and CDK5/8 enzymes. All examined compounds induced cell cycle arrest in the G0/G1 phase in the BxPC-3 and PC-3 cells and simultaneously caused the accumulation of cells in the S phase in the HCT 116 cells. In addition, the increase in the subG1 fraction was observed in PC-3 and HeLa cells. The application of a fluorescent H2DCFDA probe revealed the high pro-oxidative properties of the tested triazine derivatives, especially MM131. In conclusion, the obtained results suggest that MM129, MM130, and MM131 exhibited strong pro-apoptotic properties towards investigated cells, mainly against the HeLa and HCT 116 cell lines, and high pro-oxidative potential as well. Moreover, it is suggested that the anticancer activity of the tested compounds may be associated with their ability to inhibit CDK enzymes activities.


Assuntos
Antineoplásicos , Sulfonamidas , Humanos , Estrutura Molecular , Células HeLa , Sulfonamidas/farmacologia , Sulfonamidas/química , Triazinas/farmacologia , Triazinas/química , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular , Estresse Oxidativo , Sulfanilamida/farmacologia , Apoptose , Proliferação de Células
11.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240275

RESUMO

A new series of 4-((7-methoxyquinolin-4-yl) amino)-N-(substituted) benzenesulfonamide 3(a-s) was synthesized via the reaction of 4-chloro-7-methoxyquinoline 1 with various sulfa drugs. The structural elucidation was verified based on spectroscopic data analysis. All the target compounds were screened for their antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria, and unicellular fungi. The results revealed that compound 3l has the highest effect on most tested bacterial and unicellular fungal strains. The highest effect of compound 3l was observed against E. coli and C. albicans with MIC = 7.812 and 31.125 µg/mL, respectively. Compounds 3c and 3d showed broad-spectrum antimicrobial activity, but the activity was lower than that of 3l. The antibiofilm activity of compound 3l was measured against different pathogenic microbes isolated from the urinary tract. Compound 3l could achieve biofilm extension at its adhesion strength. After adding 10.0 µg/mL of compound 3l, the highest percentage was 94.60% for E. coli, 91.74% for P. aeruginosa, and 98.03% for C. neoformans. Moreover, in the protein leakage assay, the quantity of cellular protein discharged from E. coli was 180.25 µg/mL after treatment with 1.0 mg/mL of compound 3l, which explains the creation of holes in the cell membrane of E. coli and proves compound 3l's antibacterial and antibiofilm properties. Additionally, in silico ADME prediction analyses of compounds 3c, 3d, and 3l revealed promising results, indicating the presence of drug-like properties.


Assuntos
Anti-Infecciosos , Infecções Urinárias , Escherichia coli , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Sulfanilamida/farmacologia , Sulfonamidas/farmacologia , Fungos , Biofilmes
12.
J Agric Food Chem ; 71(18): 6894-6907, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37125728

RESUMO

Due to the large amount of antibiotics used for human therapy, agriculture, and even aquaculture, the emergence of multidrug-resistant Streptococcus suis (S. suis) led to serious public health threats. Antibiotic-assisted strategies have emerged as a promising approach to alleviate this crisis. Here, the polyphenolic compound gallic acid was found to enhance sulfonamides against multidrug-resistant S. suis. Mechanistic analysis revealed that gallic acid effectively disrupts the integrity and function of the cytoplasmic membrane by dissipating the proton motive force of bacteria. Moreover, we found that gallic acid regulates the expression of dihydrofolate reductase, which in turn inhibits tetrahydrofolate synthesis. As a result of polypharmacology, gallic acid can fully restore sulfadiazine sodium activity in the animal infection model without any drug resistances. Our findings provide an insightful view into the threats of antibiotic resistance. It could become a promising strategy to resolve this crisis.


Assuntos
Streptococcus suis , Animais , Humanos , Streptococcus suis/genética , Streptococcus suis/metabolismo , Testes de Sensibilidade Microbiana , Antibacterianos/metabolismo , Sulfanilamida/metabolismo , Sulfanilamida/farmacologia , Membrana Celular
13.
Fertil Steril ; 120(3 Pt 2): 650-659, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37116639

RESUMO

OBJECTIVE: To assess the association between preconception antibiotic use and fecundability, the per menstrual cycle probability of conception. DESIGN: SnartForaeldre.dk, a Danish prospective cohort study of women trying to conceive (2007-2020). SETTING: Not applicable. SUBJECT(S): 9462 female participants, median age 29 years at enrollment. EXPOSURE: Antibiotic use was defined by filled prescriptions retrieved from the Danish National Prescription Registry, using Anatomical Therapeutic Chemical codes, and modeled as time-varying (menstrual cycle-varying) exposure. MAIN OUTCOME MEASURE(S): Pregnancy status was reported on female follow-up questionnaires every 8 weeks for up to 12 months or until conception. Fecundability ratios (FR) and 95% confidence intervals (CI) were computed using proportional probabilities regression models, with adjustment for age, partner age, education, smoking, folic acid supplementation, body mass index, parity, cycle regularity, timing of intercourse, and sexually transmitted infections. RESULT(S): During all cycles of observation, the percentage of participants filing at least 1 antibiotic prescription was 11.9%; 8.6% had a prescription for penicillins, 2.1% for sulfonamides, and 1.8% for macrolides. Based on life-table methods, 86.5% of participants conceived within 12 cycles of follow-up. Recent preconception antibiotic use was associated with reduced fecundability (≥1 prescription vs. none: adjusted FR = 0.86; 95% CI, 0.76-0.99). For participants using penicillins, sulfonamides, or macrolides, the adjusted FRs were 0.97 (95% CI, 0.83-1.12), 0.68 (95% CI, 0.47-0.98), and 0.59 (95% CI, 0.37-0.93), respectively. CONCLUSION(S): Preconception use of antibiotics, specifically sulfonamides and macrolides, was associated with decreased fecundability compared with no use. The observed associations may be explained plausibly by confounding by indication, as we lacked data on indications for the prescribed antibiotics. Consequently, we cannot separate the effect of the medication from the effect of the underlying infection.


Assuntos
Antibacterianos , Fertilidade , Gravidez , Feminino , Humanos , Adulto , Estudos Prospectivos , Antibacterianos/efeitos adversos , Sulfanilamida/farmacologia , Penicilinas/farmacologia , Dinamarca/epidemiologia
14.
Molecules ; 28(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903314

RESUMO

Sulfonamides are a conventional class of antibiotics that are well-suited to combat infections. However, their overuse leads to antimicrobial resistance. Porphyrins and analogs have demonstrated excellent photosensitizing properties and have been used as antimicrobial agents to photoinactivate microorganisms, including multiresistant Staphylococcus aureus (MRSA) strains. It is well recognized that the combination of different therapeutic agents might improve the biological outcome. In this present work, a novel meso-arylporphyrin and its Zn(II) complex functionalized with sulfonamide groups were synthesized and characterized and the antibacterial activity towards MRSA with and without the presence of the adjuvant KI was evaluated. For comparison, the studies were also extended to the corresponding sulfonated porphyrin TPP(SO3H)4. Photodynamic studies revealed that all porphyrin derivatives were effective in photoinactivating MRSA (>99.9% of reduction) at a concentration of 5.0 µM upon white light radiation with an irradiance of 25 mW cm-2 and a total light dose of 15 J cm-2. The combination of the porphyrin photosensitizers with the co-adjuvant KI during the photodynamic treatment proved to be very promising allowing a significant reduction in the treatment time and photosensitizer concentration by six times and at least five times, respectively. The combined effect observed for TPP(SO2NHEt)4 and ZnTPP(SO2NHEt)4 with KI seems to be due to the formation of reactive iodine radicals. In the photodynamic studies with TPP(SO3H)4 plus KI, the cooperative action was mainly due to the formation of free iodine (I2).


Assuntos
Iodo , Staphylococcus aureus Resistente à Meticilina , Fotoquimioterapia , Porfirinas , Infecções Estafilocócicas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Staphylococcus aureus , Porfirinas/farmacologia , Antibacterianos/farmacologia , Sulfanilamida/farmacologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos/farmacologia , Iodo/farmacologia
15.
ChemMedChem ; 18(8): e202200641, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36754780

RESUMO

A new series of tetrasubstituted imidazole derivatives carrying pyrimidine sulfonamide pharmacophores has been synthesized and evaluated for their anticancer activities. In-vitro screening of these hybrids against a full 60-cell-line panel at a single dose of 10 µM showed significant growth inhibition of up to 95 %. The most active compound showed in-vitro anticancer activities against (i) abnormal HER2 and (ii) two mutants for EGFR. Apoptotic gene expression revealed that lead compounds induced MCF-7 cell line apoptosis together with considerable change in the Bax/Bcl-2 expression ratio. One lead compound led to a significant cell-cycle S-phase arrest, while another blocked the cell cycle at G1/S-phase causing the accumulation of cells. Docking analysis of these two hybrids adopted the orientation and binding interactions with a higher liability to enter the active side pocket of HER2, L858R, and T790 M, preferable to that of co-crystallized ligands. Modelling simulation was consistent with the acquired biological evaluation.


Assuntos
Antineoplásicos , Humanos , Relação Estrutura-Atividade , Antineoplásicos/química , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Células MCF-7 , Sulfanilamida/farmacologia , Receptores ErbB , Pirimidinas/farmacologia , Pirimidinas/química , Imidazóis/farmacologia , Apoptose , Linhagem Celular Tumoral , Estrutura Molecular , Simulação de Acoplamento Molecular
16.
Environ Pollut ; 319: 120998, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603760

RESUMO

Mineral elements and antibiotic-resistant bacterial pollutants in livestock and poultry farms' wastewater are often sources of ecological and public health problems. To understand the heavy-metal pollution status and the characteristics of drug-resistant Escherichia coli (E. coli) in swine-farm wastewater in Shandong Province and to provide guidance for the rational use of mineral-element additives, common antibiotics, and quaternary ammonium compound disinfectants on swine farms, 10 mineral elements were measured and E. coli isolated from wastewater and its resistance to 29 commonly used antibiotics and resistance genes was determined. Finally, phylogenetic and multi-locus sequence typing (MLST) analyses was performed on E. coli. The results showed serious pollution from iron and zinc, with a comprehensive pollution index of 708.94 and 3.13, respectively. It is worth noting that average iron levels in 75% (12/16) of the districts exceed allowable limits. Multidrug-resistant E. coli were found in every city of the province. The E. coli isolated from swine-farm wastewater were mainly resistant to tetracyclines (95.3%), chloramphenicol (77.8%), and sulfonamides (62.2%), while antibiotic resistance genes for quinolones, tetracyclines, sulfonamides, aminoglycosides, and ß-lactams were all more than 60%. The clonal complex 10 (CC10) was prevalent, and ST10 and ST48 were dominant in E. coli isolates. Multidrug-resistant E. coli were widely distributed, with mainly A genotypes. However, the mechanism of the effect of iron on antibiotic resistance needs more study in this area. Thus, further strengthening the prevention and control of iron and zinc pollution and standardizing the use of antibiotics and mineral element additives in the swine industry are necessary.


Assuntos
Antibacterianos , Metais Pesados , Animais , Suínos , Antibacterianos/farmacologia , Escherichia coli , Fazendas , Tipagem de Sequências Multilocus , Águas Residuárias , Filogenia , Agricultura , Metais Pesados/toxicidade , Sulfanilamida/farmacologia , Tetraciclinas/farmacologia , Ferro/farmacologia , Zinco/farmacologia , China , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana
17.
Curr Pharm Des ; 29(5): 323-355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36515045

RESUMO

Antibiotic resistance can be characterized, in biochemical terms, as an antibiotic's inability to reach its bacterial target at a concentration that was previously effective. Microbial resistance to different agents can be intrinsic or acquired. Intrinsic resistance occurs due to inherent functional or structural characteristics of the bacteria, such as antibiotic-inactivating enzymes, nonspecific efflux pumps, and permeability barriers. On the other hand, bacteria can acquire resistance mechanisms via horizontal gene transfer in mobile genetic elements such as plasmids. Acquired resistance mechanisms include another category of efflux pumps with more specific substrates, which are plasmid-encoded. Efflux pumps are considered one of the main mechanisms of bacterial resistance to antibiotics and biocides, presenting themselves as integral membrane transporters. They are essential in both bacterial physiology and defense and are responsible for exporting structurally diverse substrates, falling into the following main families: ATP-binding cassette (ABC), multidrug and toxic compound extrusion (MATE), major facilitator superfamily (MFS), small multidrug resistance (SMR) and resistance-nodulation-cell division (RND). The Efflux pumps NorA and Tet(K) of the MFS family, MepA of the MATE family, and MsrA of the ABC family are some examples of specific efflux pumps that act in the extrusion of antibiotics. In this review, we address bacterial efflux pump inhibitors (EPIs), including 1,8-naphthyridine sulfonamide derivatives, given the pre-existing knowledge about the chemical characteristics that favor their biological activity. The modification and emergence of resistance to new EPIs justify further research on this theme, aiming to develop efficient compounds for clinical use.


Assuntos
Proteínas de Bactérias , Staphylococcus aureus , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Sulfonamidas/farmacologia , Bactérias , Antibacterianos/farmacologia , Sulfanilamida/farmacologia , Naftiridinas/farmacologia , Testes de Sensibilidade Microbiana
18.
Sci Total Environ ; 861: 160574, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36455746

RESUMO

The judgment of joint resistance action is significant for evaluating the resistance risk of antibacterial mixture. Using bacterial mutation frequency (MF) and conjugative transfer frequency (CTF) to respectively characterize the bacterial endogenous and exogenous resistance, mutation unit and conjugative transfer unit have been proposed to judge the joint resistance action of antibacterial mixture at a certain dose. However, these methods could not evaluate the antibacterial mixture's joint resistance action at a larger concentration-range. In this study, the concentration addition for bacterial resistance (CA-BR) approach was used to judge the joint resistance actions between kanamycin sulfate (KAN) and some other typical antibacterial agents, including sulfonamides (SAs), sulfonamide potentiators (SAPs), and silver antibacterial compounds (SACs). Through comparing the hormetic dose-response curves of the binary mixtures on the MF (or CTF) in Escherichia coli (E. coli) and the corresponding CA-BR curves calculated from the hormetic dose-responses of the single agents, the joint resistance actions between KAN and other agents were judged to exhibit dose-dependent feature: with the increase of mixture concentration, the joint mutation actions between KAN and SAs (or SAPs) were fixed at synergism, and the joint mutation actions between KAN and SACs varied from antagonism to synergism; the joint conjugative transfer actions between KAN and other agents changed from antagonism to synergism. Mechanistic explanation suggested that the heterogeneous pattern of joint resistance action had a close relationship with the interplays among the agents' modes of action, and meanwhile was significantly influenced by their joint survival pressure on E. coli. This study reveals the dose-dependent feature for the joint resistance action of antibacterial mixture and highlights the importance of exposure concentration, which will benefit clarifying the resistance risk of antibacterial mixture in the environment.


Assuntos
Escherichia coli , Hormese , Antibacterianos/toxicidade , Interações Medicamentosas , Sulfanilamida/farmacologia
19.
Ultrason Sonochem ; 90: 106165, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36183548

RESUMO

The chemotype of arylsulfonamide derivatives of cyclic arylguanidines is a source of molecules with valuable biological activities, including antimicrobial and antitumor properties. The methods of the synthesis presented in the literature are characterized with low selectivity and high environmental nuisance. In this publication, we present a developed alternative and earlier undescribed pathway C, for the synthesis of arylsulfonamide derivatives of cyclic arylguanidines (N-(1H-arylimidazol-2-yl)arylsulfonamides and N-(1,4-dihydroquinazolin-2-yl)arylsulfonamides), including reaction between 2-(methylsulfanyl)-benzimidazole or 2-(methylsulfanyl)-3,4-dihydroquinazoline with arylsulfonamides. We also optimized previously reported methods; A (reaction of 2-aminobenzimidazole or 2-amino-3,4-dihydroquinazoline with arylsulfonyl chlorides) and B (reaction of dimethyl-(arylsulfonyl)carbonodithioimidate with aryldiamines). The conducted research allowed achieving two independent ecological and quick methods of obtaining the desired products. We used ecological methods of ultrasound-assisted or microwave synthesis, solvent-free reactions and a"green" reaction environment. In both pathways, it has proven advantageous to use H2O as the solvent and K2CO3 (1 or 3 equivalent) as the basic agent. In the sonochemical variant, the efficiency reached B: 37-89 %, C: 90 % in 60 min (P = 80 W and f = 40 kHz), while in the microwave synthesis it was B: 38-74 %, C: 63-85 % in 0.5-4 min (P = 50 W). Path A led to a complementary substitution product (i.e. 1-(arylsulfonyl)-1H-benzimidazol-2-amine or 1-(arylsulfonyl)-1,4-dihydroquinazolin-2-amine). We obtained a small group of compounds that were tested for cytotoxicity. The 10f (N-(1,4-dihydroquinazolin-2-yl)naphthalene-1-sulfonamide) showed cytotoxic activity towards human astrocytoma cell line 1321 N1. The calculated IC50 value was 8.22 µM at 24 h timepoint (doxorubicin suppressed 1321 N1 cell viability with IC50 of 1.1 µM). The viability of the cells exposed to 10f for 24 h dropped to 48.0 % compared to vehicle control, while the cells treated with doxorubicin experienced decline to 47.5 %. We assessed its potential usefulness in pharmacotherapy in the ADMET study, confirming its ability to cross the blood-brain barrier (Pe = 5.0 ± 1.5 × 10-6 cm/s) and the safety of its potential use in terms of DDI and hepatotoxicity.


Assuntos
Antineoplásicos , Sulfonamidas , Humanos , Sulfonamidas/farmacologia , Sulfonamidas/química , Antineoplásicos/química , Sobrevivência Celular , Sulfanilamida/farmacologia , Doxorrubicina/farmacologia , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Estrutura Molecular
20.
Molecules ; 27(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080238

RESUMO

To develop new fungicides with high efficiency, 46 novel sulfonamide derivatives were designed and synthesized by introducing pinacolone fragment into chesulfamide which was used as lead compound. All compounds were characterized by 1H NMR, 13C NMR, and MS spectra, and the structure of compound P-27 was also confirmed by X-ray single crystal diffraction. It was found that a variety of compounds present excellent inhibitory effect against Botrytis cinerea. The inhibition rates of P-29 on tomato and strawberry were 90.24% (200 mg/L) and 100% (400 mg/L) in vivo respectively, which were better than the lead compound chesulfamide (59.23% on tomato seedlings and 29.63% on strawberries).


Assuntos
Antifúngicos , Fungicidas Industriais , Antifúngicos/química , Botrytis , Butanonas , Fungicidas Industriais/química , Relação Estrutura-Atividade , Sulfanilamida/farmacologia , Sulfonamidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA